Fourier - Gauss transforms of the continuous big q-Hermite polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 L559
(http://iopscience.iop.org/0305-4470/30/16/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:50

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Fourier-Gauss transforms of the continuous big \boldsymbol{q}-Hermite polynomials

M K Atakishiyeva \dagger and N M Atakishiyev $\ddagger \S$
\dagger Facultad de Ciencias, UAEM, Apartado Postal 396-3, CP 62250 Cuernavaca, Morelos, Mexico \ddagger Instituto de Matematicas, UNAM, Apartado Postal 273-3, CP 62210 Cuernavaca, Morelos, Mexico

Received 9 May 1997

Abstract

We examine the Fourier-Gauss transformation properties of a two-parameter family of the continuous big q-Hermite polynomials.

1. Introduction

The goal of this paper is to continue the study of the Fourier-Gauss transformation properties of a family of the five-parameter Askey-Wilson polynomials [1]
$p_{n}(x ; a, b, c, d \mid q):=a^{-n}(a b, a c, a d ; q)_{n 4} \phi_{3}\left[\begin{array}{c}q^{-n}, a b c d q^{n-1}, a \mathrm{e}^{\mathrm{i} \theta}, a \mathrm{e}^{-\mathrm{i} \theta} \\ a b, a c, a d,\end{array} ; q, q\right]$
in the variable $x=\cos \theta$. The basic hypergeometric series ${ }_{4} \phi_{3}$ in (1.1) is a particular case of the definition
${ }_{r} \phi_{s}\left[\begin{array}{l}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{n}\end{array} ; q, z\right]:=\sum_{k=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{k}}{\left(b_{1}, b_{2}, \ldots, b_{s}, q ; q\right)_{k}}\left[(-1)^{k} q^{k(k-1) / 2}\right]^{1+s-r} z^{k}$
with the standard notation of q-analysis [2]

$$
\begin{equation*}
(a ; q)_{k}=\prod_{j=0}^{k-1}\left(1-a q^{j}\right) \quad\left(a_{1}, \ldots, a_{r} ; q\right)_{k}=\prod_{j=1}^{k}\left(a_{j} ; q\right)_{k} \tag{1.3}
\end{equation*}
$$

Observe that if one of the parameters $a_{j}, 1 \leqslant j \leqslant r$, in (1.2) is equal to $q^{-n}, n=1,2,3, \ldots$, then $\left(q^{-n} ; q\right)_{k}=0$ for $k \geqslant n+1$ by definition (1.3) and the corresponding series ${ }_{r} \phi_{s}$ is therefore represented by a finite sum in k from zero to n.

The Askey-Wilson polynomials (1.1) are symmetric with respect to the parameters a, b, c, d and

$$
\begin{equation*}
p_{n}(-x ; a, b, c, d \mid q)=(-1)^{n} p_{n}(x ;-a,-b,-c,-d \mid q) . \tag{1.4}
\end{equation*}
$$

The Askey-Wilson polynomials (1.1) with vanishing parameters a, b, c and d correspond to the continuous q-Hermite polynomials

$$
\begin{equation*}
H_{n}(x \mid q):=p_{n}(x ; 0,0,0,0 \mid q) \tag{1.5}
\end{equation*}
$$

§ On leave from: Institute of Physics, Azerbaijan Academy of Sciences, Baku 370143, Azerbaijan. E-mail address: natig@matcuer.unam.mx
of Rogers [3, 4]. At the next level of the Askey-Wilson family (1.1) one of the parameters a, b, c, and d is non-vanishing, while three others are equal to zero. This special case defines the continuous big q-Hermite polynomials [5-7]

$$
\begin{equation*}
H_{n}(x ; a \mid q):=p_{n}(x ; a, 0,0,0 \mid q) . \tag{1.6}
\end{equation*}
$$

The Fourier-Gauss transformation properties of the continuous q-Hermite polynomials (1.5) have been studied in [8]. Section 2 collects mostly known results about these polynomials, which are needed in section 3 to derive Fourier-Gauss transforms of the continuous big q-Hermite polynomials (1.6).

2. The \boldsymbol{q}-Hermite ladder

The explicit form of the continuous q-Hermite polynomials $H_{n}(x \mid q)$ is given by their Fourier expansion
$H_{n}(\sin \kappa s \mid q)=\mathrm{i}^{n} \sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}n \\ k\end{array}\right]_{q} \mathrm{e}^{\mathrm{i}(2 k-n) \kappa s}=\mathrm{i}^{n} \mathrm{e}^{-\mathrm{i} n \kappa s}{ }_{2} \phi_{0}\left(q^{-n}, 0 ; q,-q^{n} \mathrm{e}^{2 \mathrm{i} \kappa s}\right)$
where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the q-binomial coefficient,

$$
\left[\begin{array}{l}
n \tag{2.2}\\
k
\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}=\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{q} .
$$

This follows from the definitions (1.1) and (1.5) after employing the identity [2]

$$
\begin{equation*}
\left(q^{-n} ; q\right)_{k}=(-1)^{k} q^{k(k-1) / 2-n k} \frac{(q ; q)_{n}}{(q ; q)_{n-k}} \tag{2.3}
\end{equation*}
$$

and the relation (see [5, p 18, formula (0.6.28)])

$$
\begin{equation*}
{ }_{3} \phi_{2}\left(q^{-n}, a, b ; 0,0 ; q, q\right)=a^{n}{ }_{2} \phi_{0}\left(q^{-n}, a ; q, b q^{n} / a\right) . \tag{2.4}
\end{equation*}
$$

Observe that for our purposes we find it more appropriate to use the parametrization $x=x_{q}(s):=\sin \kappa s, q=\exp \left(-2 \kappa^{2}\right)$, which is equivalent to the change of variables $\theta=\pi / 2-\kappa s$ in (1.1).

In the limit case when the parameter q tends to 1 (and, consequently, $\kappa \rightarrow 0$) we have

$$
\begin{equation*}
\lim _{q \rightarrow 1} \kappa^{-n} H_{n}(\sin \kappa s \mid q)=H_{n}(s) \tag{2.5}
\end{equation*}
$$

where $H_{n}(s)$ are the ordinary Hermite polynomials.
One can also consider the continuous q^{-1}-Hermite polynomials [4]

$$
\begin{equation*}
h_{n}(x \mid q):=\mathrm{i}^{-n} H_{n}\left(\mathrm{i} x \mid q^{-1}\right) \tag{2.6}
\end{equation*}
$$

by transforming $q \rightarrow q^{-1}$ in (1.5). Because of the inversion formula

$$
\left[\begin{array}{l}
n \tag{2.7}\\
k
\end{array}\right]_{q^{-1}}=q^{k(k-n)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

from (2.1) it follows that their explicit form is
$h_{n}(\sinh \kappa s \mid q)=\sum_{k=0}^{n}(-1)^{k} q^{k(k-n)}\left[\begin{array}{l}n \\ k\end{array}\right]_{q} \mathrm{e}^{(n-2 k) \kappa s}=\mathrm{e}^{n \kappa s}{ }_{1} \phi_{1}\left(q^{-n} ; 0 ; q,-\mathrm{e}^{-2 \kappa s}\right)$.
The continuous q-Hermite (2.1) and q^{-1}-Hermite (2.7) polynomials are related to each other through the Fourier-Gauss integral transform [8]

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} H_{n}(\sin \kappa s \mid q) \mathrm{d} s=\mathrm{i}^{n} q^{n^{2} / 4} h_{n}(\sinh \kappa r \mid q) \mathrm{e}^{-r^{2} / 2} \tag{2.9}
\end{equation*}
$$

As is evident from (2.5), in the limit when $q \rightarrow 1$ this integral transform reduces to that for the Hermite polynomials $H_{n}(s)$:

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} H_{n}(s) \mathrm{d} s=\mathrm{i}^{n} H_{n}(r) \mathrm{e}^{-r^{2} / 2} \tag{2.10}
\end{equation*}
$$

It is essential to note that one may consider another parametrization $x=y_{q}(s):=\cos \kappa s$ for the argument of the q-Hermite polynomials in (2.1), which is linearly independent from $x_{q}(s)=\sin \kappa s$. The corresponding Fourier-Gauss transform has the form

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} H_{n}(\cos \kappa s \mid q) \mathrm{d} s=q^{n^{2} / 4} H_{n}\left(\cos \kappa r \mid q^{-1}\right) \mathrm{e}^{-r^{2} / 2} \tag{2.11}
\end{equation*}
$$

Since

$$
\begin{equation*}
\lim _{q \rightarrow 1} H_{n}(\cos \kappa s \mid q)=2^{n} \tag{2.12}
\end{equation*}
$$

in the limit as $q \rightarrow 1$ the integral transform (2.11) only reproduces the particular case of (2.10) with $n=0$, that is, the Fourier transform for the Gauss exponential function $\exp \left(-s^{2} / 2\right)$. This circumstance explains why it is more interesting to consider the parametrization $x_{q}(s)=\sin \kappa s$.

3. The big q-Hermite ladder

The next level of the Askey-Wilson hierarchy (1.1) corresponds to a two-parameter family of the continuous big q-Hermite polynomials

$$
\begin{gather*}
H_{n}(\sin \kappa s ; a \mid q)=a^{-n}{ }_{3} \phi_{2}\left(q^{-n}, \mathrm{i} a \mathrm{e}^{-\mathrm{i} \kappa s},-\mathrm{i} a \mathrm{e}^{\mathrm{i} \kappa s} ; 0,0 ; q, q\right) \\
=\mathrm{i}^{n} \mathrm{e}^{-\mathrm{i} n \kappa s}{ }_{2} \phi_{0}\left(q^{-n}, \mathrm{i} a \mathrm{e}^{-\mathrm{i} \kappa s} ; q,-q^{n} \mathrm{e}^{2 i \kappa s}\right) \tag{3.1}
\end{gather*}
$$

The second line in (3.1) follows from the relation (2.4) between the terminating basic hypergeometric series ${ }_{3} \phi_{2}$ and ${ }_{2} \phi_{0}$.

Two neighbouring levels (2.1) and (3.1) are explicitly related by

$$
H_{n}(x ; a \mid q)=\sum_{k=0}^{n} q^{k(k-1) / 2}\left[\begin{array}{l}
n \tag{3.2}\\
k
\end{array}\right]_{q}(-a)^{k} H_{n-k}(x \mid q)
$$

The coefficients of $H_{n-k}(x \mid q)$ in (3.2) are a special case of the general formula for the connection coefficients of the Askey-Wilson polynomials (1.1), derived in [1] (see also [7]). The inverse expansion with respect to (3.2) is

$$
H_{n}(x \mid q)=\sum_{k=0}^{n} a^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} H_{k}(x ; a \mid q)
$$

To verify (3.2'), multiply both sides of (3.2) by the factor $\left[\begin{array}{c}m \\ n\end{array}\right]_{q} a^{-n}$ and sum over n from zero to m. This gives (3.2') upon employing the orthogonality relation [9]

$$
\sum_{k=0}^{m}(-1)^{k} q^{k(k-1) / 2}\left[\begin{array}{c}
m \tag{3.3}\\
k
\end{array}\right]_{q}\left[\begin{array}{c}
m-k \\
n
\end{array}\right]_{q}=\delta_{m n}
$$

for the q-binomial coefficients (2.2).
From the limit relation [5]

$$
\begin{equation*}
\lim _{q \rightarrow 1} \kappa^{-n} H_{n}(\kappa s ; 2 \kappa a \mid q)=H_{n}(s-a) \tag{3.4}
\end{equation*}
$$

it follows that when $q \rightarrow 1$ the expansions (3.2) and (3.2') reduce to the identities [7]

$$
\begin{align*}
& H_{n}(s-a)=\sum_{k=0}^{n}(-2 a)^{n-k}\binom{n}{k} H_{k}(s) \tag{3.5}\\
& H_{n}(s)=\sum_{k=0}^{n}(2 a)^{n-k}\binom{n}{k} H_{k}(s-a) \tag{3.5'}
\end{align*}
$$

for the classical Hermite polynomials, respectively. Here $\binom{n}{k}$ is the ordinary binomial coefficient.

In analogy with (2.6), one can introduce the continuous big q^{-1}-Hermite polynomials
$h_{n}(x ; a \mid q):=\mathrm{i}^{-n} H_{n}\left(\mathrm{i} x ; a \mid q^{-1}\right)=q^{-n(n-1) / 2} \sum_{k=0}^{n} q^{k(k-1) / 2}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}(\mathrm{i} a)^{n-k} h_{k}(x \mid q)$.
Their explicit form is
$h_{n}(\sinh \kappa s ; a \mid q)=(\mathrm{i} a)^{-n}{ }_{3} \phi_{0}\left(q^{-n}, \mathrm{i}^{\kappa s} / a,-\mathrm{i}^{-\kappa s} / a ; q, a^{2} q^{n}\right)$

$$
\begin{equation*}
=\mathrm{e}^{n \kappa s}{ }_{2} \phi_{1}\left(q^{-n},-\mathrm{i}^{-\kappa s} / a ; 0 ; q,-\mathrm{i} a q \mathrm{e}^{-\kappa s}\right) . \tag{3.7}
\end{equation*}
$$

The second line in (3.7) follows from the equality

$$
\begin{equation*}
{ }_{2} \phi_{1}\left(q^{-n}, b ; 0 ; q, z\right)=b^{n}{ }_{3} \phi_{0}\left(q^{-n}, b, q / z ; q, q^{n-1} z / b\right) \tag{3.8}
\end{equation*}
$$

which is a particular case of the transformation for a terminating series ${ }_{2} \phi_{1}$ with a vanishing parameter c (see [2], formula (III.8)).

The inverse relation with respect to (3.6) is

$$
h_{m}(x \mid q)=\sum_{n=0}^{m} q^{n(n-m)}\left[\begin{array}{c}
m \tag{3.6'}\\
n
\end{array}\right]_{q}(-\mathrm{i} a)^{m-n} h_{n}(x ; a \mid q) .
$$

In the limit case when the parameter q tends to 1 , we have

$$
\begin{equation*}
\lim _{q \rightarrow 1} \kappa^{-n} h_{n}(\kappa s ; 2 \kappa a \mid q)=H_{n}(s+\mathrm{i} a) . \tag{3.9}
\end{equation*}
$$

The first type of the Fourier-Gauss transform

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} H_{n}(\sin \kappa s ; a \mid q) \mathrm{d} s \\
& \quad=\mathrm{i}^{n} q^{n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{3 k^{2} / 4-(n+1) k / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(\mathrm{i} a)^{k} h_{n-k}(\sinh \kappa r \mid q) \tag{3.10}
\end{align*}
$$

for the continuous big q-Hermite polynomials (3.1) is an immediate consequence of (3.2) and (2.9). Substituting (3.6') into the right-hand side of (3.10), one can also represent (3.10) alternatively as

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{is} r-s^{2} / 2} H_{n}(\sin \kappa s ; a \mid q) \mathrm{d} s \\
& \quad=\mathrm{i}^{n} q^{n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{k(k-n)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} c_{k, n}(q)(-\mathrm{i} a)^{k} h_{n-k}(\sinh \kappa r ; a \mid q)
\end{align*}
$$

where the a-independent constant $c_{k, n}(q)$ is equal to
$c_{k, n}(q)=\sum_{j=0}^{k}(-1)^{j} q^{3 j^{2} / 4-k j+(n-1) j / 2}\left[\begin{array}{l}k \\ j\end{array}\right]_{q}=\sum_{j=0}^{k} \frac{\left(q^{-k} ; q\right)_{j}}{(q ; q)_{j}} q^{(j / 2+n) j / 2}$.

The Fourier-Gauss integrals (3.10) and (3.10') thus transform the continuous big q Hermite polynomials (3.1) into linear combinations of either the q^{-1}-Hermite polynomials (i.e. from the lower level of the Askey-Wilson hierarchy) or the big q^{-1}-Hermite polynomials (i.e. of the same level), respectively.

In a similar manner, by using the inverse to the (2.9) Fourier-Gauss transform and the relations (3.2') and (3.6), one obtains

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} s r-s^{2} / 2} h_{n}(\sinh \kappa s ; a \mid q) \mathrm{d} s \\
& \quad=\mathrm{i}^{-n} q^{-n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{k^{2} / 4+(1-n) k / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-a)^{k} H_{n-k}(\sin \kappa r \mid q) \tag{3.12}\\
& \quad=\mathrm{i}^{-n} q^{-n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} c_{k, n}\left(q^{-1}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} a^{k} H_{n-k}(\sin \kappa r ; a \mid q)
\end{align*}
$$

Observe that the integral transforms (3.10) and (3.12), as well as (3.10') and (3.12'), are related to each other by a replacement of the base $q \rightarrow q^{-1}$ (i.e. $\kappa \rightarrow \mathrm{i} \kappa$). In the limit case when the parameter q tends to 1 , these integral transforms coincide with

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} H_{n}(s-a) \mathrm{d} s=\mathrm{i}^{n} H_{n}(r+\mathrm{i} a) \mathrm{e}^{-r^{2} / 2} \tag{3.13}
\end{equation*}
$$

and its inverse, respectively.
A derivation of another type of Fourier-Gauss integral transform for the continuous big q-Hermite polynomials (3.1) is based upon the relation [10]

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} e_{q}\left(t \mathrm{e}^{\mathrm{i} \kappa s}\right) \mathrm{d} s=\varepsilon_{q}\left(t \mathrm{e}^{-\kappa r}\right) \mathrm{e}^{-r^{2} / 2} \tag{3.14}
\end{equation*}
$$

between the q-exponential functions

$$
\begin{equation*}
e_{q}(z):=\sum_{n=0}^{\infty} \frac{z^{n}}{(q ; q)_{n}} \quad \varepsilon_{q}(z):=\sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} z^{n} \tag{3.15}
\end{equation*}
$$

Indeed, let us consider an integral

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} H_{n}(\sin \kappa s ; a \mid q) e_{q}\left(\mathrm{i} a \mathrm{e}^{-\mathrm{i} \kappa s}\right) \mathrm{d} s \tag{3.16}
\end{equation*}
$$

Substituting the second line from (3.1) into (3.16) gives the expression
$\frac{\mathrm{i}^{n}}{\sqrt{2 \pi}} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}} q^{n k-k(k-1) / 2} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i}[r+(2 k-n) \kappa] s-s^{2} / 2}\left(\mathrm{i} a \mathrm{e}^{-\mathrm{i} \kappa s} ; q\right)_{k} e_{q}\left(\mathrm{i} a \mathrm{e}^{-\mathrm{i} \kappa s}\right) \mathrm{d} s$.
Since

$$
\begin{equation*}
(z ; q)_{k} e_{q}(z)=e_{q}\left(q^{k} z\right) \tag{3.18}
\end{equation*}
$$

one can rewrite (3.17) as
$\frac{\mathrm{i}^{n}}{\sqrt{2 \pi}} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}} q^{n k-k(k-1) / 2} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i}[r+(2 k-n) \kappa] s-s^{2} / 2} e_{q}\left(\mathrm{i} a q^{k} \mathrm{e}^{-\mathrm{i} \kappa s}\right) \mathrm{d} s$.
The integral in (3.19) is now evaluated by the aid of (3.14). We thus arrive at a FourierGauss transform of the form
$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} H_{n}(\sin \kappa s ; a \mid q) e_{q}\left(\mathrm{i} a \mathrm{e}^{-\mathrm{i} \kappa s}\right) \mathrm{d} s=\mathrm{i}^{n} q^{n^{2} / 4} h_{n}(\sinh \kappa r \mid q) \varepsilon_{q}\left(\mathrm{i} a q^{n / 2} \mathrm{e}^{\kappa r}\right) \mathrm{e}^{-r^{2} / 2}$.

The inverse integral transform is

$$
\frac{\mathrm{i}^{n} q^{n^{2} / 4}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} s r-s^{2} / 2} h_{n}(\sinh \kappa r \mid q) \varepsilon_{q}\left(\mathrm{i} a q^{n / 2} \mathrm{e}^{\kappa r}\right) \mathrm{d} r=H_{n}(\sin \kappa s ; a \mid q) e_{q}\left(\mathrm{i} a \mathrm{e}^{-\mathrm{i} \kappa s}\right) \mathrm{e}^{-s^{2} / 2}
$$

It is obvious that for $a=0$ the integral transforms (3.20) and (3.20') coincide with (2.9) and its inverse, respectively.

Similarly, using the Fourier-Gauss integral transform [10]

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} E_{q}\left(t \mathrm{e}^{\kappa s}\right) \mathrm{d} s=\varepsilon_{q}\left(-q^{-1 / 2} t \mathrm{e}^{\mathrm{i} \kappa r}\right) \mathrm{e}^{-r^{2} / 2} \tag{3.21}
\end{equation*}
$$

for the reciprocal to the $e_{q}(z) q$-exponential function

$$
\begin{equation*}
E_{q}(z):=\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}}{(q ; q)_{n}}(-z)^{n} \tag{3.22}
\end{equation*}
$$

and the relation

$$
\begin{equation*}
(q / z ; q)_{n} E_{q}(z)=q^{n(n+1) / 2}(-z)^{-n} E_{q}\left(q^{-n} z\right) \tag{3.23}
\end{equation*}
$$

one obtains

$$
\begin{align*}
& \frac{\mathrm{i}^{-n} q^{n^{2} / 4}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} h_{n}(\sinh \kappa s ; a \mid q) E_{q}\left(\mathrm{i} a q \mathrm{e}^{\kappa s}\right) \mathrm{d} s \\
& \quad=H_{n}(\sin \kappa r \mid q) \varepsilon_{q}\left(-\mathrm{i} a q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \kappa r}\right) \mathrm{e}^{-r^{2} / 2} \tag{3.24}
\end{align*}
$$

Its inverse integral transform is

$$
\begin{array}{r}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} s r-s^{2} / 2} H_{n}(\sin \kappa r \mid q) \varepsilon_{q}\left(-\mathrm{i} a q^{(1-n) / 2} \mathrm{e}^{\mathrm{i} \kappa r}\right) \mathrm{d} r \\
\quad=\mathrm{i}^{-n} q^{n^{2} / 4} h_{n}(\sinh \kappa s ; a \mid q) E_{q}\left(\mathrm{i} a q \mathrm{e}^{\kappa s}\right) \mathrm{e}^{-s^{2} / 2}
\end{array}
$$

Observe that since

$$
\begin{equation*}
e_{1 / q}(z)=E_{q}(-q z) \quad \varepsilon_{1 / q}(z)=\varepsilon_{q}\left(-q^{1 / 2} z\right) \tag{3.25}
\end{equation*}
$$

the Fourier-Gauss integral transforms (3.24) and (3.24') are related to (3.20) and (3.20'), respectively, by a replacement of the base $q \rightarrow q^{-1}$ (i.e. $\kappa \rightarrow \mathrm{i} \kappa$). A common characteristic feature to note about all of these four integral transforms is that they connect polynomial families from neighbouring levels (2.1) and (3.1) of the Askey-Wilson hierarchy (1.1) (cf formula (2.9)).

4. Concluding remarks

Once the Fourier-Gauss transform (2.9) between the continuous q-Hermite polynomials $H_{n}(x \mid q)$ with different values of the parameter q [8] and a Ramanujan-type continuous measure of orthogonality [11] for the Askey-Wilson polynomials $p_{n}(x ; a, b, c, d \mid q)$ were established, it became clear that the same type of integral transforms might exist for the higher levels of the Askey-Wilson hierarchy. In the present paper we have been able to verify this conjecture [11] for the continuous big q-Hermite polynomials $H_{n}(x ; a \mid q)$, which are one step higher than $H_{n}(x \mid q)$. The possibility of finding Fourier-Gauss transforms for the next levels of the Askey-Wilson family is of great interest for a deeper understanding of the classical q-orthogonal polynomials and certain questions about their classification. Work in this direction is in progress.

Discussions with F Leyvraz and K B Wolf are gratefully acknowledged. This work was partially supported by the UNAM-DGAPA project IN106595.

References

[1] Askey R and Wilson J A 1985 Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials Mem. Am. Math. Soc. 54 1-55
[2] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[3] Askey R and Ismail M E H 1983 A generalization of ultraspherical polynomials Studies in Pure Mathematics ed P Erdós (Boston, MA: Birkhäuser) pp 55-78
[4] Askey R 1989 Continuous q-Hermite polynomials when $q>1 q$-series and Partitions (IMA Volumes in Mathematics and its Applications) ed D Stanton (New York: Springer) pp 151-8
[5] Koekoek R and Swarttouw R F 1994 The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report 94-05, Delft University of Technology
[6] Floreanini R, LeTourneux J and Vinet L 1995 An algebraic interpretation of the continuous big q-Hermite polynomials J. Math. Phys. 36 5091-7
[7] Floreanini R, LeTourneux J and Vinet L 1995 More on the q-oscillator algebra and q-orthogonal polynomials J. Phys. A: Math. Gen. 28 L287-L293
[8] Atakishiyev N M and Nagiyev Sh M 1994 On the wave functions of a covariant linear oscillator Theor. Math. Phys. 98 162-6
[9] Feinsilver P 1989 Elements of q-harmonic analysis J. Math. Anal. Appl. 141 509-26
[10] Atakishiyev N M 1996 On a one-parameter family of q-exponential functions J. Phys. A: Math. Gen. 29 L223-7
[11] Atakishiyev N M 1995 Orthogonality of Askey-Wilson polynomials with respect to a measure of Ramanujan type Theor. Math. Phys. 102 23-8
Atakishiyev N M 1995 Ramanujan-type continuous measures for classical q-polynomials Theor. Math. Phys. 105 1500-8

