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LETTER TO THE EDITOR

Fourier–Gauss transforms of the continuous bigq-Hermite
polynomials
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† Facultad de Ciencias, UAEM, Apartado Postal 396-3, CP 62250 Cuernavaca, Morelos, Mexico
‡ Instituto de Matematicas, UNAM, Apartado Postal 273-3, CP 62210 Cuernavaca, Morelos,
Mexico

Received 9 May 1997

Abstract. We examine the Fourier–Gauss transformation properties of a two-parameter family
of the continuous bigq-Hermite polynomials.

1. Introduction

The goal of this paper is to continue the study of the Fourier–Gauss transformation properties
of a family of the five-parameter Askey–Wilson polynomials [1]

pn(x; a, b, c, d|q) := a−n(ab, ac, ad; q)n4φ3

[
q−n, abcdqn−1, a eiθ , a e−iθ

ab, ac, ad,
; q, q

]
(1.1)

in the variablex = cosθ . The basic hypergeometric series4φ3 in (1.1) is a particular case
of the definition

rφs

[
a1, . . . , ar
b1, . . . , bn

; q, z
]

:=
∞∑
k=0

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs, q; q)k [(−1)kqk(k−1)/2]1+s−rzk (1.2)

with the standard notation ofq-analysis [2]

(a; q)k =
k−1∏
j=0

(1− aqj ) (a1, . . . , ar; q)k =
k∏

j=1

(aj ; q)k. (1.3)

Observe that if one of the parametersaj , 16 j 6 r, in (1.2) is equal toq−n, n = 1, 2, 3, . . .,
then (q−n; q)k = 0 for k > n + 1 by definition (1.3) and the corresponding seriesrφs is
therefore represented by a finite sum ink from zero ton.

The Askey–Wilson polynomials (1.1) are symmetric with respect to the parametersa,
b, c, d and

pn(−x; a, b, c, d|q) = (−1)npn(x;−a,−b,−c,−d|q). (1.4)

The Askey–Wilson polynomials (1.1) with vanishing parametersa, b, c andd correspond
to the continuousq-Hermite polynomials

Hn(x|q) := pn(x; 0, 0, 0, 0|q) (1.5)
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of Rogers [3, 4]. At the next level of the Askey–Wilson family (1.1) one of the parameters
a, b, c, and d is non-vanishing, while three others are equal to zero. This special case
defines the continuous bigq-Hermite polynomials [5–7]

Hn(x; a|q) := pn(x; a, 0, 0, 0|q). (1.6)

The Fourier–Gauss transformation properties of the continuousq-Hermite polynomials
(1.5) have been studied in [8]. Section 2 collects mostly known results about these
polynomials, which are needed in section 3 to derive Fourier–Gauss transforms of the
continuous bigq-Hermite polynomials (1.6).

2. The q-Hermite ladder

The explicit form of the continuousq-Hermite polynomialsHn(x|q) is given by their Fourier
expansion

Hn(sinκs|q) = in
n∑
k=0

(−1)k
[
n

k

]
q

ei(2k−n)κs = in e−inκs
2φ0(q

−n, 0; q,−qn e2iκs) (2.1)

where
[
n

k

]
q

is theq-binomial coefficient,[
n

k

]
q

:= (q; q)n
(q; q)k(q; q)n−k =

[
n

n− k
]
q

. (2.2)

This follows from the definitions (1.1) and (1.5) after employing the identity [2]

(q−n; q)k = (−1)kqk(k−1)/2−nk (q; q)n
(q; q)n−k (2.3)

and the relation (see [5, p 18, formula (0.6.28)])

3φ2(q
−n, a, b; 0, 0; q, q) = an2φ0(q

−n, a; q, bqn/a). (2.4)

Observe that for our purposes we find it more appropriate to use the parametrization
x = xq(s) := sinκs, q = exp(−2κ2), which is equivalent to the change of variables
θ = π/2− κs in (1.1).

In the limit case when the parameterq tends to 1 (and, consequently,κ → 0) we have

lim
q→1

κ−nHn(sinκs|q) = Hn(s) (2.5)

whereHn(s) are the ordinary Hermite polynomials.
One can also consider the continuousq−1-Hermite polynomials [4]

hn(x|q) := i−nHn(ix|q−1) (2.6)

by transformingq → q−1 in (1.5). Because of the inversion formula[
n

k

]
q−1

= qk(k−n)
[
n

k

]
q

(2.7)

from (2.1) it follows that their explicit form is

hn(sinhκs|q) =
n∑
k=0

(−1)kqk(k−n)
[
n

k

]
q

e(n−2k)κs = enκs1φ1(q
−n; 0; q,−e−2κs). (2.8)

The continuousq-Hermite (2.1) andq−1-Hermite (2.7) polynomials are related to each
other through the Fourier–Gauss integral transform [8]

1√
2π

∫ ∞
−∞

eisr−s2/2Hn(sinκs|q) ds = inqn
2/4hn(sinhκr|q) e−r

2/2. (2.9)
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As is evident from (2.5), in the limit whenq → 1 this integral transform reduces to that
for the Hermite polynomialsHn(s):

1√
2π

∫ ∞
−∞

eisr−s2/2Hn(s) ds = inHn(r) e−r
2/2. (2.10)

It is essential to note that one may consider another parametrizationx = yq(s) := cosκs
for the argument of theq-Hermite polynomials in (2.1), which is linearly independent from
xq(s) = sinκs. The corresponding Fourier–Gauss transform has the form

1√
2π

∫ ∞
−∞

eisr−s2/2Hn(cosκs|q) ds = qn2/4Hn(cosκr|q−1) e−r
2/2. (2.11)

Since

lim
q→1

Hn(cosκs|q) = 2n (2.12)

in the limit as q → 1 the integral transform (2.11) only reproduces the particular case
of (2.10) with n = 0, that is, the Fourier transform for the Gauss exponential function
exp(−s2/2). This circumstance explains why it is more interesting to consider the
parametrizationxq(s) = sinκs.

3. The big q-Hermite ladder

The next level of the Askey–Wilson hierarchy (1.1) corresponds to a two-parameter family
of the continuous bigq-Hermite polynomials

Hn(sinκs; a|q) = a−n3φ2(q
−n, ia e−iκs,−iaeiκs; 0, 0; q, q)

= in e−inκs
2φ0(q

−n, ia e−iκs; q,−qn e2iκs). (3.1)

The second line in (3.1) follows from the relation (2.4) between the terminating basic
hypergeometric series3φ2 and 2φ0.

Two neighbouring levels (2.1) and (3.1) are explicitly related by

Hn(x; a|q) =
n∑
k=0

qk(k−1)/2

[
n

k

]
q

(−a)kHn−k(x|q). (3.2)

The coefficients ofHn−k(x|q) in (3.2) are a special case of the general formula for the
connection coefficients of the Askey–Wilson polynomials (1.1), derived in [1] (see also
[7]). The inverse expansion with respect to (3.2) is

Hn(x|q) =
n∑
k=0

an−k
[
n

k

]
q

Hk(x; a|q). (3.2′)

To verify (3.2′), multiply both sides of (3.2) by the factor
[
m

n

]
q
a−n and sum overn from

zero tom. This gives(3.2′) upon employing the orthogonality relation [9]
m∑
k=0

(−1)kqk(k−1)/2

[
m

k

]
q

[
m− k
n

]
q

= δmn (3.3)

for the q-binomial coefficients (2.2).
From the limit relation [5]

lim
q→1

κ−nHn(κs; 2κa|q) = Hn(s − a) (3.4)
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it follows that whenq → 1 the expansions (3.2) and(3.2′) reduce to the identities [7]

Hn(s − a) =
n∑
k=0

(−2a)n−k
(
n

k

)
Hk(s) (3.5)

Hn(s) =
n∑
k=0

(2a)n−k
(
n

k

)
Hk(s − a) (3.5′)

for the classical Hermite polynomials, respectively. Here

(
n

k

)
is the ordinary binomial

coefficient.
In analogy with (2.6), one can introduce the continuous bigq−1-Hermite polynomials

hn(x; a|q) := i−nHn(ix; a|q−1) = q−n(n−1)/2
n∑
k=0

qk(k−1)/2

[
n

k

]
q

(ia)n−khk(x|q). (3.6)

Their explicit form is

hn(sinhκs; a|q) = (ia)−n3φ0(q
−n, i eκs/a,−i e−κs/a; q, a2qn)

= enκs2φ1(q
−n,−i e−κs/a; 0; q,−iaq e−κs). (3.7)

The second line in (3.7) follows from the equality

2φ1(q
−n, b; 0; q, z) = bn3φ0(q

−n, b, q/z; q, qn−1z/b) (3.8)

which is a particular case of the transformation for a terminating series2φ1 with a vanishing
parameterc (see [2], formula (III.8)).

The inverse relation with respect to (3.6) is

hm(x|q) =
m∑
n=0

qn(n−m)
[
m

n

]
q

(−ia)m−nhn(x; a|q). (3.6′)

In the limit case when the parameterq tends to 1, we have

lim
q→1

κ−nhn(κs; 2κa|q) = Hn(s + ia). (3.9)

The first type of the Fourier–Gauss transform

1√
2π

∫ ∞
−∞

eisr−s2/2Hn(sinκs; a|q) ds

= inqn
2/4 e−r

2/2
n∑
k=0

q3k2/4−(n+1)k/2

[
n

k

]
q

(ia)khn−k(sinhκr|q) (3.10)

for the continuous bigq-Hermite polynomials (3.1) is an immediate consequence of (3.2)
and (2.9). Substituting(3.6′) into the right-hand side of (3.10), one can also represent (3.10)
alternatively as

1√
2π

∫ ∞
−∞

eisr−s2/2Hn(sinκs; a|q) ds

= inqn
2/4 e−r

2/2
n∑
k=0

qk(k−n)
[
n

k

]
q

ck,n(q)(−ia)khn−k(sinhκr; a|q) (3.10′)

where thea-independent constantck,n(q) is equal to

ck,n(q) =
k∑

j=0

(−1)j q3j2/4−kj+(n−1)j/2

[
k

j

]
q

=
k∑

j=0

(q−k; q)j
(q; q)j q(j/2+n)j/2. (3.11)
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The Fourier–Gauss integrals (3.10) and(3.10′) thus transform the continuous bigq-
Hermite polynomials (3.1) into linear combinations of either theq−1-Hermite polynomials
(i.e. from the lower level of the Askey–Wilson hierarchy) or the bigq−1-Hermite
polynomials (i.e. of the same level), respectively.

In a similar manner, by using the inverse to the (2.9) Fourier–Gauss transform and the
relations(3.2′) and (3.6), one obtains

1√
2π

∫ ∞
−∞

e−isr−s2/2hn(sinhκs; a|q) ds

= i−nq−n
2/4 e−r

2/2
n∑
k=0

qk
2/4+(1−n)k/2

[
n

k

]
q

(−a)kHn−k(sinκr|q) (3.12)

= i−nq−n
2/4 e−r

2/2
n∑
k=0

ck,n(q
−1)

[
n

k

]
q

akHn−k(sinκr; a|q). (3.12′)

Observe that the integral transforms (3.10) and (3.12), as well as(3.10′) and (3.12′), are
related to each other by a replacement of the baseq → q−1 (i.e. κ → iκ). In the limit case
when the parameterq tends to 1, these integral transforms coincide with

1√
2π

∫ ∞
−∞

eisr−s2/2Hn(s − a) ds = inHn(r + ia) e−r
2/2 (3.13)

and its inverse, respectively.
A derivation of another type of Fourier–Gauss integral transform for the continuous big

q-Hermite polynomials (3.1) is based upon the relation [10]

1√
2π

∫ ∞
−∞

eisr−s2/2eq(t eiκs) ds = εq(t e−κr ) e−r
2/2 (3.14)

between theq-exponential functions

eq(z) :=
∞∑
n=0

zn

(q; q)n εq(z) :=
∞∑
n=0

qn
2/4

(q; q)n z
n. (3.15)

Indeed, let us consider an integral

1√
2π

∫ ∞
−∞

eisr−s2/2Hn(sinκs; a|q)eq(ia e−iκs) ds. (3.16)

Substituting the second line from (3.1) into (3.16) gives the expression

in√
2π

n∑
k=0

(q−n; q)k
(q; q)k qnk−k(k−1)/2

∫ ∞
−∞

ei[r+(2k−n)κ]s−s2/2(ia e−iκs; q)keq(ia e−iκs) ds. (3.17)

Since

(z; q)keq(z) = eq(qkz) (3.18)

one can rewrite (3.17) as

in√
2π

n∑
k=0

(q−n; q)k
(q; q)k qnk−k(k−1)/2

∫ ∞
−∞

ei[r+(2k−n)κ]s−s2/2eq(iaq
k e−iκs) ds. (3.19)

The integral in (3.19) is now evaluated by the aid of (3.14). We thus arrive at a Fourier–
Gauss transform of the form

1√
2π

∫ ∞
−∞

eisr−s2/2Hn(sinκs; a|q)eq(ia e−iκs) ds= inqn
2/4hn(sinhκr|q)εq(iaqn/2 eκr ) e−r

2/2.

(3.20)
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The inverse integral transform is

inqn
2/4

√
2π

∫ ∞
−∞

e−isr−s2/2hn(sinhκr|q)εq(iaqn/2 eκr ) dr = Hn(sinκs; a|q)eq(ia e−iκs) e−s
2/2.

(3.20′)

It is obvious that fora = 0 the integral transforms (3.20) and(3.20′) coincide with (2.9)
and its inverse, respectively.

Similarly, using the Fourier–Gauss integral transform [10]

1√
2π

∫ ∞
−∞

eisr−s2/2Eq(t eκs) ds = εq(−q−1/2t eiκr ) e−r
2/2 (3.21)

for the reciprocal to theeq(z) q-exponential function

Eq(z) :=
∞∑
n=0

qn(n−1)/2

(q; q)n (−z)
n (3.22)

and the relation

(q/z; q)nEq(z) = qn(n+1)/2(−z)−nEq(q−nz) (3.23)

one obtains

i−nqn
2/4

√
2π

∫ ∞
−∞

eisr−s2/2hn(sinhκs; a|q)Eq(iaq eκs) ds

= Hn(sinκr|q)εq(−iaq(1−n)/2 eiκr ) e−r
2/2. (3.24)

Its inverse integral transform is

1√
2π

∫ ∞
−∞

e−isr−s2/2Hn(sinκr|q)εq(−iaq(1−n)/2 eiκr ) dr

= i−nqn
2/4hn(sinhκs; a|q)Eq(iaq eκs) e−s

2/2. (3.24′)

Observe that since

e1/q(z) = Eq(−qz) ε1/q(z) = εq(−q1/2z) (3.25)

the Fourier–Gauss integral transforms (3.24) and(3.24′) are related to (3.20) and(3.20′),
respectively, by a replacement of the baseq → q−1 (i.e. κ → iκ). A common characteristic
feature to note about all of these four integral transforms is that they connect polynomial
families from neighbouring levels (2.1) and (3.1) of the Askey–Wilson hierarchy (1.1) (cf
formula (2.9)).

4. Concluding remarks

Once the Fourier–Gauss transform (2.9) between the continuousq-Hermite polynomials
Hn(x|q) with different values of the parameterq [8] and a Ramanujan-type continuous
measure of orthogonality [11] for the Askey–Wilson polynomialspn(x; a, b, c, d|q) were
established, it became clear that the same type of integral transforms might exist for the
higher levels of the Askey–Wilson hierarchy. In the present paper we have been able to
verify this conjecture [11] for the continuous bigq-Hermite polynomialsHn(x; a|q), which
are one step higher thanHn(x|q). The possibility of finding Fourier–Gauss transforms for
the next levels of the Askey–Wilson family is of great interest for a deeper understanding
of the classicalq-orthogonal polynomials and certain questions about their classification.
Work in this direction is in progress.
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